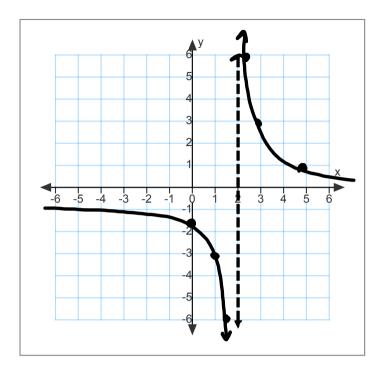
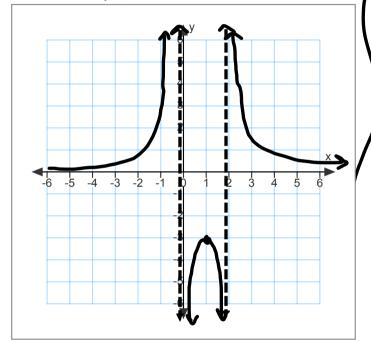
Section 3.6


Asymptotes

$$f(x) = \frac{3}{x-2}$$

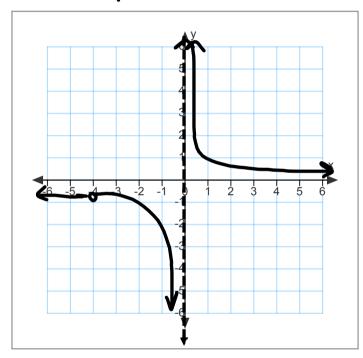
×	0	l	1.5	1.99
Y	-1.5	-3	-6	-300

as
$$x \rightarrow 2^{-}, f(x) \rightarrow -\infty$$

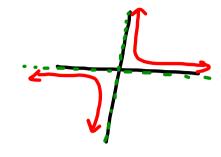

X	5	3	2.5	2.01
y	\	3	6	300

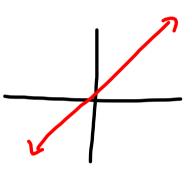
$$f(x) = \frac{x+2}{x^2-2x}$$

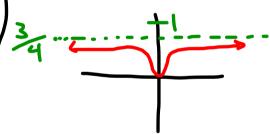
$$x(x-2)$$


VA @ : 0,2

$$f(x) = \frac{x+4}{x^2+4x} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x}$$

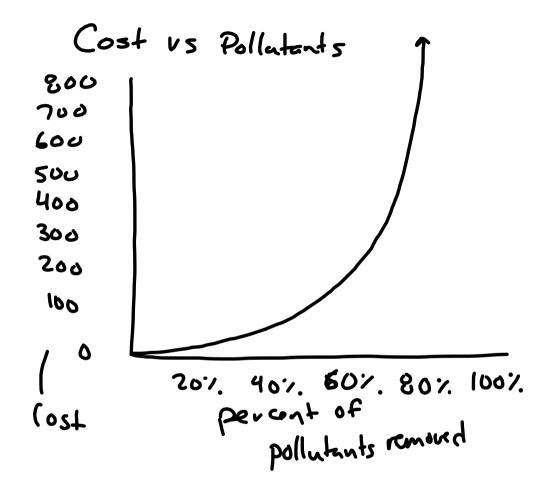

$$VA: 0$$


$$Hole: -4$$



Horizontal Asympotes

- 1) If the degree of the denominator is greater than the numerator then a HA exists at y=0
- 2) If the degree of the numerator is greater than the denominator, then there is no HA.
- 3) If the degree of the numerator and denominator are equal, then a HA exists at y= Leading coefficient(N)/ Leading coefficient(D)


$$f(x) = 5x^6/(7X^6 - 4x^2)$$

A small business spends \$5000 in start up costs on a new products. In addition, every new product costs \$0.50 to make. Find the average cost of producing 10 units, 100 units, 1000 units, and infinity units. What happens to the average price as I produce more units?

Cost = 0.50x + 5000

Average Cost =
$$0.5x + 5000$$
 $\frac{1}{x}$
 $\frac{1}{x} = 0.5x + 5000$
 $\frac{1}{x} = 0.5x + 5000$
 $\frac{1}{x} = 0.5 + 5000$
 $\frac{1}{x} = 0.5 + 5000$

X	Y
10	\$500.50
100	\$50.50
1000	\$5.50
600,01	\$ 1.00
100,000	\$0.55
1,000,000	\$0.505
8	\$0.50

